33,028 research outputs found

    Processing eutectics in space

    Get PDF
    Experimental work is reported which was directed toward obtaining interface shape control while a numerical thermal analysis program was being made operational. An experimental system was developed in which the solid-liquid interface in a directionally solidified aluminum-nickel eutectic could be made either concave to the melt or convex to the melt. This experimental system provides control over the solid-liquid interface shape and can be used to study the effect of such control on the microstructure. The SINDA thermal analysis program, obtained from Marshall Space Flight Center, was used to evaluate experimental directional solidification systems for the aluminum-nickel and the aluminum-copper eutectics. This program was applied to a three-dimensional ingot, and was used to calculate the thermal profiles in axisymmetric heat flow. The results show that solid-liquid interface shape control can be attained with physically realizable thermal configurations and the magnitudes of the required thermal inputs were indicated

    In-flight simulation investigation of rotorcraft pitch-roll cross coupling

    Get PDF
    An in-flight simulation experiment investigating the handling qualities effects of the pitch-roll cross-coupling characteristic of single-main-rotor helicopters is described. The experiment was conducted using the NASA/Army CH-47B variable stability helicopter with an explicit-model-following control system. The research is an extension of an earlier ground-based investigation conducted on the NASA Ames Research Center's Vertical Motion Simulator. The model developed for the experiment is for an unaugmented helicopter with cross-coupling implemented using physical rotor parameters. The details of converting the model from the simulation to use in flight are described. A frequency-domain comparison of the model and actual aircraft responses showing the fidelity of the in-flight simulation is described. The evaluation task was representative of nap-of-the-Earth maneuvering flight. The results indicate that task demands are important in determining allowable levels of coupling. In addition, on-axis damping characteristics influence the frequency-dependent characteristics of coupling and affect the handling qualities. Pilot technique, in terms of learned control crossfeeds, can improve performance and lower workload for particular types of coupling. The results obtained in flight corroborated the simulation results

    Processing eutectics in space

    Get PDF
    The investigations of directional solidification have indicated the necessity of establishing a secure foundation in earth-based laboratory processing in order to properly assess low-gravity processing. Emphasis was placed on evaluating the regularity of microstructure of the rod-like eutectic Al-Al3Ni obtained under different conditions of growth involving the parameters of thermal gradient, solidification rate, and interfacial curvature. In the case of Al-Al3Ni, where the Al3Ni phase appears as facets rods, solidification rate was determined to be a controlling parameter. Zone melting of thin eutectic films showed that for films of the order of 10 to 20 micrometers thick, the extra surface energy appears to act to stabilize a regular microstructure. The results suggest that the role of low-gravity as provided in space-laboratory processing of materials is to be sought in the possibility of generating a higher thermal gradient in the solidifying ingot for a given power input-output arrangement than can be obtained under normal one-g processes

    Audit of burns patients in the intensive care setting [poster]

    Get PDF
    No abstract available

    Processing eutectics in space

    Get PDF
    Studies which have been done in an earth-based laboratory environment have generally not yielded specimens with the degree of perfection required of the eutectic microstructure to provide test data to evaluate their nonstructural applications. It has been recognized that the low-g environment of an orbiting space laboratory provides a unique environment to re-examine the process of solidification with the goal of producing better microstructures. The objective of this program is to evaluate the feasibility of using the space environment for producing eutectics with microstructures which can be of value on earth. In carrying out this objective, evaluative investigations were carried out on the technology of solidification in a 1-g environment to provide sound baseline data for planning space laboratory experiments

    Population assessment of the vermilion snapper, Rhomboplites aurorubens, from the Southeastern United States

    Get PDF
    Changes in the age structure and population size of vermilion snapper, Rhornboplites aurorubens, from North Carolina through the Florida Keys were examined using records of landings and size frequencies of fish from commercial, recreational, and headboat fisheries from 1986-1996. Population size in numbers at age was estimated for each year by applying separable virtual population analysis (SVPA) to the landings in numbers at age. SVPA was used to estimate annual, age-specific fishing mortality (F) for four levels of natural mortality (M = 0.20, 0.25, 0.30, and 0.35). Although landings of vermilion snapper for the three fisheries have declined, minimum fish size regulations have resulted in an increase in the mean size of fish landed. Age at entry and age at full recruitment were age-1 andage-3 fDr 1986-1991, compared with age-1 and age-4, respectively, for 1992-1996. Levels of mortality from fishing (F) ranged from 0.38 - 0.61 for the entire period. Current spawning potential ratio (SPR) is 21% or 27% depending on the natural mortality estimate. SPR could be raised to 30% or 40% with a reduction in F, or by increasing the age at entry to the fisheries. The latter could be enhanced now if fishermen, particularly recreational, comply with minimum size regulations. However, released fish mortality, modeled in the assessment at 27%, will continue to make the achievement of 30% and 40% SPR more difficult. (PDF contains 63 pages

    What do gas-rich galaxies actually tell us about modified Newtonian dynamics?

    Full text link
    It has recently been claimed that measurements of the baryonic Tully-Fisher relation (BTFR), a power-law relationship between the observed baryonic masses and outer rotation velocities of galaxies, support the predictions of modified Newtonian dynamics for the slope and scatter in the relation, while challenging the cold dark matter (CDM) paradigm. We investigate these claims, and find that: 1) the scatter in the data used to determine the BTFR is in conflict with observational uncertainties on the data; 2) these data do not make strong distinctions regarding the best-fit BTFR parameters; 3) the literature contains a wide variety of measurements of the BTFR, many of which are discrepant with the recent results; and 4) the claimed CDM "prediction" for the BTFR is a gross oversimplification of the complex galaxy-scale physics involved. We conclude that the BTFR is currently untrustworthy as a test of CDM.Comment: 5 pages, 2 figures; minor revisions to match published versio

    Analyses for precision reduced optical observations from the international satellite geodesy experiment (ISAGEX)

    Get PDF
    During the time period of December 1970 to September 1971 an International Satllite Geodesy Experiment (ISAGEX) was conducted. Over fifty optical and laser tracking stations participated in the data gathering portion of this experiment. Data from some of the stations had not been previously available for dynamical orbit computations. With the recent availability of new data from the Astrosoviet, East European and other optical stations, orbital analyses were conducted to insure compatibility with the previously available laser data. These data have also been analyzed using dynamical orbital techniques for the estimation of estimation of geocentric coordinates for six camera stations (for Astrosoviet, two East European). Thirteen arcs of GEOS-1 and 2 observations between two and four days in length were used. The uncertainty in these new station values is considered to be about 20 meters in each coordinate. Adjustments to the previously available values were generally a few hundred meters. With these geocentric coordinates these data will now be used to supplement earth physics investigations during the ISAGEX

    A conceptual framework and protocol for defining clinical decision support objectives applicable to medical specialties.

    Get PDF
    BackgroundThe U.S. Centers for Medicare and Medicaid Services established the Electronic Health Record (EHR) Incentive Program in 2009 to stimulate the adoption of EHRs. One component of the program requires eligible providers to implement clinical decision support (CDS) interventions that can improve performance on one or more quality measures pre-selected for each specialty. Because the unique decision-making challenges and existing HIT capabilities vary widely across specialties, the development of meaningful objectives for CDS within such programs must be supported by deliberative analysis.DesignWe developed a conceptual framework and protocol that combines evidence review with expert opinion to elicit clinically meaningful objectives for CDS directly from specialists. The framework links objectives for CDS to specialty-specific performance gaps while ensuring that a workable set of CDS opportunities are available to providers to address each performance gap. Performance gaps may include those with well-established quality measures but also priorities identified by specialists based on their clinical experience. Moreover, objectives are not constrained to performance gaps with existing CDS technologies, but rather may include those for which CDS tools might reasonably be expected to be developed in the near term, for example, by the beginning of Stage 3 of the EHR Incentive program. The protocol uses a modified Delphi expert panel process to elicit and prioritize CDS meaningful use objectives. Experts first rate the importance of performance gaps, beginning with a candidate list generated through an environmental scan and supplemented through nominations by panelists. For the highest priority performance gaps, panelists then rate the extent to which existing or future CDS interventions, characterized jointly as "CDS opportunities," might impact each performance gap and the extent to which each CDS opportunity is compatible with specialists' clinical workflows. The protocol was tested by expert panels representing four clinical specialties: oncology, orthopedic surgery, interventional cardiology, and pediatrics
    corecore